Fourth Grade Farewell

Oh, my! What a \qquad year we had in fourth grade. This school (adjective) year went by as \qquad as a \qquad . Some of my \qquad memories were: \qquad ,
(fourth grade memory)
and \qquad . This year we learned how to (fourth grade memory)
\qquad books. My favorite
(verb)
(adjective)
book was \qquad . All was \qquad until we heard
(Book title)
(adjective)
the \qquad news that we could not return to school after Spring (adjective)

Break due to Covid-19. I was \qquad . I spent the days (adjective)
\qquad . Mostly I
(verb) (verb) (verb)
missed \qquad . I know my teacher misses me every day! (noun)
This summer, I plan to \qquad , \qquad , and
(adjective)
(adjective)
. Although I will miss \qquad and (adjective)
, I am so excited to be in \qquad grade at a brand (noun)
(number)
new school next year.

SUMMER Bucket List

Fill in each line with what you'd like to do \& see this Summer. Check them off when you've completed them!

SOMMER Reading Log

Keep track of the books you read this summer by writing them down, below!

Date	Title of Book	Number of Pages

Don't miss out on these Summer Reading Programs:

Public Library
Click here for more info!

2020 Kernels Summer Reading Program Scorecard

5-DIGIT NUMBER CHALLENGES 1

Use the digits 3, 1, 2, 6, 9 to make a 5-digit number each time.

1)	What is the largest 5-digit number you can make with the digits?	
2)	Subtract 90 from this number.	
3)	What is the smallest 5-digit number you can make?	
4)	Add 900 to this number.	
5)	What is the largest even number you can make?	
6)	What is the number closest to 40,000 you can make?	
7)	What is the number closest to 60,000 you can make?	
8)	Make a 5-digit number which is a multiple of 3.	
9)	Make a 5-digit number which is a multiple of 4.	
10)	Write down 5 different numbers between 63,000 and 64,000 that you can make.	
11)	Write these 5 numbers in order from smallest to largest.	
	Round it to the nearest 10.	
Round it to the nearest 100.		
	Round it to the nearest 1000.	
	Rook the nearest $10,000$.	

1. What is the area of the rectangle?

Area $=$ \qquad cm^{2}
2. Write five names for -214 .
a. \qquad
b.
c.
d. \qquad
e.

3. For each animal, circle the most reasonable estimate of its weight.

a. raccoon	>500 pounds	<500 pounds	about 500 pounds
b. tiger	>500 pounds	<500 pounds	about 500 pounds
c. blue whale	>500 pounds	<500 pounds	about 500 pounds
d. giraffe	>500 pounds	<500 pounds	about 500 pounds
e. squirrel	>500 pounds	<500 pounds	about 500 pounds

4. Draw 3 different rectangles. Each should have an area of 12 square centimeters.

Next to each rectangle, record its perimeter.

Outdoor Math Scavenger Hunt

Find an example of an acute angle. Draw below:	Find an example of an obtuse angle. Draw below:	Find an example of a right angle. Draw below:
Find an object that has symmetry:	Measure two leaves in inches. Record below:	Measure two leaves in centimeters. Record below:
	inches	inches centimeters
centimeters		

Find three objects that are quadrangles: 1.) \qquad 2.) \qquad 3.) \qquad	Write two fractional sentences about things you see outside. EX: 12/20 of the windows are open. 1.) \qquad \qquad \qquad 2.) \qquad \qquad \qquad	Sit in a comfy area and think of 10 math vocab words you have learned this year. Record in this box: 1.) numerator 6.) 2.) 7.) 3.) 8.) 4.) 9.) 5.) 10.)
Find an example of a growing pattern:	Find an example of a repeating pattern:	Find an example of something that is divided into equal parts. Draw below:

MAKE YOUR OWN VOLCANO!

YOU WILL NEED:

- A volcano - Talk to an art teacher about making a volcano out of papier mache or plaster. You can also use clay or if you're in a hurry to make your volcano, use a mound of dirt outside.
- A container that 35 mm film comes in or similar size container.
- Red and yellow food coloring (optional).
- Vinegar
- Baking soda
- Liquid dish washing soap

WHAT TO DO

1. Go outside or prepare for some clean-up inside.
2. Put the film container into the volcano at the top.
3. Add two spoonfuls of baking soda.
4. Add about a spoonful of dish soap.

5. Add about 5 drops each of the red and yellow food coloring.
6. Now for the eruption!: Add about an ounce of the vinegar into the container and watch your volcano come alive!

HOW DOES IT WORK?

A VOLCANO is produced over thousands of years as heat and pressure build up. That aspect of a volcano is very difficult to recreate in a home experiment. However this volcano will give you an idea of what it might look like when a volcano erupts flowing lava. This is a classic experiment in which a CHEMICAL reaction can create the appearance of a PHYSICAL volcano eruption. You should look at pictures of volcanoes to be familiar with the different types. (A SHIELD volcano, for example is the most common kind of volcano, and yet few people know about them.) The reaction will bubble up and flow down the side like a real volcano (only much faster!) Look for videos of volcanoes erupting and be sure that you understand how heat and pressure work to really make volcanoes erupt.

MAKE IT AN EXPERIMENT:

The above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

1. Does vinegar temperature affect how fast the volcano erupts?

2. Does the shape of the volcano affect the direction the eruption travels?
3. What can be added to the "lava" to slow it down and make it more like real lava?
4. What combination of vinegar and baking soda creates the biggest eruption?

FLOAT PRESENTATION

3 minute presentation.
Start with an introduction. Ex. "Hello, my name is \qquad . I am from \qquad class. The state I will be presenting today is the state of \qquad .

Have a plan of the order you will present your float. Ex. Top, front, sides and then back. STAY BEHIND THE FLOAT AT ALL TIMES.

The most interesting information you learned or favorite part of the project. Be specific.

Be loud, clear and slow.
Do not read off of the float. Face the audience at all times. You may use an index card for the fast facts only, but still look at audience occasionally while reading. IT IS OKAY TO HAVE SILENT PAUSES! Watch out for filler words such as "um" and "and". Use domain specific vocabulary, but you may need to explain.

You may tip the float. If something falls off, breaks or doesn't go as planned keep going.

Use expression in your presentation!
Don't worry. We will practice and practice and practice so you will know what you are doing.

You are to be "the expert"! Learn as much as you can about your state and do more research if you need to.

